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Abstract

In this paper we realistically model a two-eye visual environment and study its effect on
single cell synaptic modification. In particular, we study the effect of image misalignment
on receptive field formation after eye opening. We show that binocular misalignment effects
PCA and BCM learning in different ways. For the BCM learning rule this misalignment
is sufficient to produce varying degrees of ocular dominance, whereas for PCA learning
binocular neurons emerge in every case. Network results seem dominated by single cell
results. Such differences should help us distinguish between these learning rules.

1 Introduction

It is now generally accepted that receptive fields in the visual cortex of cats are dramatically
influenced by the visual environment (For a comprehensive review see, Frégnac and Imbert, 1984)
. In normally reared animals, the population of sharply tuned neurons increases monotonically,
whereas for dark reared animals it initially increases, but then almost disappears (See, for
example, Imbert and Buisseret, 1975) . Ocular dominance is dramatically influenced by such
manipulations as monocular deprivation (Wiesel and Hubel, 1963) or reverse suture (Blakemore
and Van-Sluyters, 1974; Mioche and Singer, 1989). It has even been shown that preferred
orientations can be directly altered by pairing the preferred orientation with a negative current,
and the non-preferred orientation with a positive current (Frégnac et al., 1992).

Different models, that attempt to explain how cortical receptive fields evolve, have been
proposed over the years (von der Malsburg, 1973; Nass and Cooper, 1975; Perez et al., 1975;
Bienenstock et al., 1982; Linsker, 1986; Miller, 1994, e.g.). Such models are composed of several
components: the exact nature of the learning rule, the representation of the visual environment,
and the architecture of the network.

Most of these models assume a simplified representation of the visual environment
(von der Malsburg, 1973, for example), or a second order correlation function of the visual
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environment (Miller, 1994). Realistic representations of the visual environment have only very
recently been considered (Hancock et al., 1992; Law and Cooper, 1994; Liu and Shouval, 1994;
Shouval and Liu, 1995). Furthermore, only in recent years have the statistics of natural images
been studied, and compared with neurophysiological findings (Field, 1987; Field, 1989; Badde-
ley and Hancock, 1991; Atick and Redlich, 1992; Ruderman and Bialek, 1993; Liu and Shouval,
1994; Shouval and Liu, 1995).

In this paper, we realistically model a two-eye visual environment. We study how orien-
tation selectivity and ocular dominance form simulatneously in both single cells and networks.
In particular, we study the effect of image misalignment between the two eyes on receptive field
formation 1.

We compare the effect of such image misalignment on two different learning rules PCA
(Oja, 1982) and BCM (Bienenstock et al., 1982; Intrator and Cooper, 1992). We have chosen to
examine these two because they are well defined and and have stable fixed points. Many other
proposed learning rules (Sejnowski, 1977; Linsker, 1986; Miller et al., 1989, for example), are
closely related to the PCA rule. Their outcome depends only on first and second order statistics.
The BCM rule in contrast depends also on third order statistics.

We show that binocular misalignment has very different effects on these two learning
rules. For the BCM learning rule misalignment is sufficient to produce varying degrees of ocular
dominance, whereas for the PCA learning rule binocular neurons will emerge independent of the
misalignment.

2 A Binocular Visual Environment Composed of Natural Im-
ages

We have used a set of 24 natural scenes. These pictures were taken at Lincoln Woods State Park
and scanned into a 256 X 256 pixel image. We have avoided man-made objects, because they
have many sharp edges, and straight lines, which make it easier to achieve oriented receptive
fields.

We have chosen to model the effect of the retinal preprocessing by convolving the images
with a difference of Gaussians (DOG) filter, with a center radius of one pixel (o7 = 1.0) and a
surround radius of three (o5 = 3)%. The effect of this preprocessing is shown in figure 1.

As illustrated in Figure 2, the input vectors from both eyes are chosen as small, partially
overlapping, circular regions of the preprocessed natural images; these converge on the same
cortical cell.

The input from the right and left eye respectively are denoted by d' and d”, and the
output of the cortical neuron then becomes ¢ = o(d' - m! 4+ d” - m"), where ¢ is the non linear
activation function of each neuron. We have used a nonsymmetric activation function to account
for the fact that neuronal activity as measured from spontaneous activity has a longer way to
go up than to go down to zero activity.

In order to examine the effect of varying the overlap between the receptive fields we
define an overlap parameter O = s/2a, where a is the receptive field radius in pixels, and s is

! Postnatal plasticity may be needed in animals with binocular vision, as was already suggested by Blakemore -t

and van Sluyters (1975), in order to overcome an imprecise developmental alignment.

?This ratio between the center and surround in biologically plausible, and enables the PCA rule to produce .

oriented receptive fields.
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Figure 1: Three of the natural images used (top) processed by a Difference of Gaussians filter
and presented at the bottom.

Binocular Model

i Visuat pathway

Cortical neuron

loft eye A fight eya

Figure 2: Schematic diagram of the two eye model, including the visual input preprocessing.

the linear overlap in pixels, as shown in Figure 2. When the left and right receptive fields are
completely overlapping O = 1, when they are completely separate O < 0.

In order to asses the degree of cell binocularity, we introduced an ocular dominance
measure B based on left and right eye response: B = (L — R)/(L + R). B is calculated by
first finding the orientation at which the cell has the greatest binocular response to a sinusoidal
grading, and then measuring L and R, the left and right eye responses at that orientation.

This measure has been motivated by that used by Albus (1975) in defining the bin
boundaries, for a seven bin ocular dominance histogram. Since there is always some activity
from both eyes, we have extended bin 1 and 7 slightly. Our bin boundaries are given by:
-.085,-0.5,-0.15,0,15,0.5,0.85.

3 Cortical plasticity learning rules

We have employed these realistic visual inputs to test two of the leading visual cortical plasticity
rules that have been used to model various normal rearing and visual deprivation experiments:
Principal components analysis (PCA) and the Bienenstock Cooper and Munro (BCM) model.




The two algorithms differ by their information extraction properties as discussed in Intrator and
Cooper (1994); PCA extracts second order statistics from the visual environment, while BCM
extracts information contained in third order statistics as well.

3.1 Principal Components Analysis

Principal components analysis (PCA) is one of the most widely used feature extraction method
for pattern recognition tasks. PCA features are those orthogonal directions which maximize the
variance of the projected distribution of the data. They also minimize the mean squared error
between the data and a linearly reconstructed version of it based on these projections. Principal
components are optimal when the goal is to-accurately reconstruct the inputs. They are not
necessarily optimal when the goal is classification and the data is not normally distributed (see
for example, p. 212, Duda and Hart, 1973).

A simple interpretation of the Hebbian learning rule, is that with appropriate stabilizing
constraints it leads to the extraction or-approximation of principal components. This has often
been modeled ( See for example; von der Malsburg,1973; Sejnowsky, 1977; Oja, 1982; Linsker,
1986; Miller et. al., 1989) . The learning rule that we use has been proposed by Oja (1982), and
has the form: Am; = n[d;c — ¢?m;] where d; is the presynaptic activity at synapse i, c is the
postsynaptic activity, and m; is the strength of the synaptic efficacy of junction ¢. 7, is a small

.learning rate. This learning rule has been shown.to converge to the principal component of the:

data.

3.2 BCM learning rule

The BCM theory (Bienenstock et al., 1982) has been introduced to account for the striking
dependence of the sharpness of orientation selectivity on the visual environment. We shall be
using a variation due to Intrator and Cooper (1992) for a nonlinear neuron with a nonsymmetric
sigmoidal transfer function. Using the above notation, the synaptic modification is governed by
m; = n¢(c,On)d;j, where the neuronal activity is given by ¢ = o(m - d), ¢(c,0Onr) = c(c —
Oar), and Opr is a nonlinear function of some time averaged measure of cell activity, which
in its simplest form is given by @p; = E[c?], where E denotes the expectation over the visual
environment. The transfer function ¢ is non symmetric around 0 to account for the fact that
cortical neurons show a low spontaneous activity, and can thus fire at a much higher rate relative
to the the spontaneous rate, but can go only slightly below it.

4 Results
4.1 Single Cell

In all the results reported here we used a fixed circular receptive field with diameter of 20 pixels.
We tested the robustness of the results to receptive fields of sizes 10 to 30 pixels and got no
qualitative difference in the results.

BCM neurons acquire selectivity to various orientations in the partial and the nonover-
lapping case as well. When receptive fields are misaligned, various ocular dominance preferences
may occur even for the same overlap. This result stands in sharp contrast to the one obtained
by PCA neurons; only binocular neurons with a preferred horizontal direction emerge under for

the PCA rule.
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Figure 3: BCM neurons with different overlap values; O = 1,0.6,0.2, —0.2 from top to bottom.
The ocular dominance histograms summerise the ocular dominance of 100 cells at each overlap
value. The dependency of ocular dominance on visual overlap is evident.

The BCM receptive field formation results are summarized in Figure 3. Receptive field
misalignment does not affect orientation selectivity of the dominant eye, but does produce vary-
ing degrees of ocular dominance; this depends on the degree of overlap between the receptive
fields. The main result is that ocular dominance depends strongly (even for single cell simula-
tions) on the degree of overlap between visual input to the two eyes.

The PCA results are presented in Figure 4. As mentioned above, it can be seen that
the degree of overlap between receptive fields does not alter the optimal orientation, so that
whenever a cell is selective its orientation is in the horizontal direction. The degree of overlap
does affect the shape of the receptive fields, and the degree of orientation selectivity that emerges
under PCA: orientation selectivity decreases as the amount of overlap decreases. However, when
there is no overlap at all, one again gets heigher selectivity. For PCA, there is also a symmetry
between the receptive fields of both eyes. This arises from invariance to a parity transformation
defined in the appendix, that imposes binocularity.

We also studied the possibility that under the PCA rule, different orientation selective
cells would emerge if the misalignment between the two eyes was in the vertical direction, but
this produced horizontal binocular cells as well.
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Figure 4: Receptive fields for partially overlapping inputs using the PCA rule, Receptive field for
an overlap value of O = .6 (top left). Receptive field for a small overlap, O = .2 (top right).
Receptive field for no overlap , O = —.2 (bottom left). Receptive field for shift in the vertical
direction between the visual inputs when O = .5 (bottom right). In all cases the cell is binocular
and horizontal. The symmetry property evident in these receptive fields is analyzed in Shouval
et. al. (1995).

The PCA results described above were quite robust to introduction of nonlinearity in
cell’s activity; there was no qualitative difference in the results when a non symmetric sigmoidal
transfer function was used.

4.2 Networks

In order to examine how network interactions effect these results we have run simulations of
networks of interconnected neurons with both learning rules. We used a center surround in-
teraction function I, and partially overlapping circular synaptic density functions A. We have
taken the network response at point r, C(7) to be C(r) = o (¢(r) + 5 0 I(r — r')e(r’)), where
¢(r) is the single neuron response at point r. In figure 4.2 we have compared the results for
the two types of networks: PCA and BCM. We can see that these results are dominated by the
single cell results. Networks of BCM neurons attain a higher degree of ocular dominance and a
broader range of orientation preference.




5 Discussion

In this paper we contrast the consequences of a real visual environment on two learning rules,
PCA and BCM, for a single cell. We show that the BCM neuron develops orientation selective
cells to all orientations as well as varying ocular dominance. This is consistent with observation.
In contrast the PCA neuron is unable to develop cells selective to all orientations and the cells
are always binocular. All PCA neurons develop receptive fields that are symmetric under a
parity transformation.

The Network results displayed here are dominated by single cell results; Networks of
BCM neurons exhibit orientation and ocular dominance columns, whereas PCA networks are
mostly binocular, and dominated by the horizontal orientation.

A recent paper by Erwin, Obermayer and Schulten (1995) , has compared the predictions
of many models to experimental results. This comparison is different then ours in that it
concentrates on organization of receptive fields across the cortex, rather then on the properties
of the receptive fields themselves. In that paper very different types of models were compared,
and the underlying assumptions of each model were different form each other. We in contrast
compared and analyzed only two models, under the same set of realistic assumptions. However,
Erwin et. al. also attempted to combine the two network models proposed by Miller, and they
too report that in the parameter regime they have examined, they have failed to produce both
ocular dominance and orientation maps. These results can also be understood in light of the
single cell results for this type of input. The symmetry properties outlined in the appendix
apply to this correlational model as well.
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A Appendix: Symmetry properties of the eigenstates of the
two eye problem

The evolution of neurons in a binocular environment under the PCA learning rule reaches a fixed point
when Qm = Am. where m” = (m'!, m"), the left and right eye synaptic strengths, and Q is the two-eye
correlation function. By @y and @, we denote the correlation functions withing the left and right eyes,
and by Q- and @Q,; the correlation functions between left-right and right-left eyes.

We denote by upper case R's the coordinates in each receptive field with respect to a common
origin, and by lower case r’s the coordinates from the centers of each of the receptive fields. Thus Ry,
and Rg, are the coordinates of the centers of the left and right eyes, R; and R, are the coordinates of
points in both receptive fields, and r; and r, are the coordinates of the same points with respect to the
centers of the left and right receptive field centers. For a misalignment s between receptive field centers,
Roi + s = Ry, therefore R, — Rj= Ror — Ry +r, —r1=s4r, — 1y

Using translational invariance, it is easy to see that Qu = E (d(r;)d(r})) = Q(r — r’) Qrr =
E(d(en)d(r}) = E (d(ri+5)d(r}+5) = Qr — ') Qu = E(d(r)d(r)) = E (dend(r} +3)) =
Q(r—r1'+s) Qr = E(d(x;)d(r])) = E(d(ri + s)d(r])) = Q(r — r' —s) where E denotes an
average with respect to the environment and where, occasionally, for simplicity, we replace r; by r. Since

Q(r — x') = E (d(x1)d(x}) then Q(r — ') = Q(x' — r).




We now introduce a two-eye parity operator P, which inverts the coordinates, as well as the two
eyes:

r = (-—r;)
P:<{ r, = (—r;) (A.1)
s = (—s)

It follows that under P Rj— R, =r, —1r;+8= —r,.4+1r;—5
The two-eye parity operator can also be written in matrix form in terms of the one eye parity

operator P, thus
0 P
P= (P 0 > . (A.2)

The effect P on the two-eye receptive fields m is

-

m'(r;) m’"(—r;)
P r = l
m" (rr) m'(—r;)
Any correlation function that is invariant to a two-eye parity transformation P, has eigen-
functions m” (r) = (m!(r,), m"(r;)), that are also eigen-functions of P. This imposes symmetry con-

- straints on the resulting receptive fields that force them to be binocular.
Any correlation function of the form

Qr-r) Qxr-r'+s)
Q= (A.3)
Q'(r—r'—s) Qr-r')

is invariant to the two-eye parity transform P ( that is PQP = Q), as long as Q(x) = Q(—x) and
Q'(x) = Q'(—x).
Thus the eigen-functions of Q, are also eigen-function of P. The eigen-value is &1, Since P? = 1.
Therefore we deduce that

<$’g,))> = <rr2’((~_:lg) ' (A4)

) = (om0, (A5)

This means that the receptive fields for the two eyes are inverted versions of each other up to a sign.
Therefore for this learning rule the receptive fields are always perfectly binocular.

Thus
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Figure 5: Comparison of Networks of PCA neurons (top) and BCM neurons (bottom). Network
sizes are 24 X 24 Neurons, the interaction function is a balanced difference of Gaussians with
o1 = 1.5 and oy = 3.5. The center of each synaptic density function A is shifted by one pixel
with respect to it’s neighbour, the diameter. of A is 18 pixels and the shift between the two
eyes 16 pixels. On the left the feed forward Receptive fields for the left eye is presented, in the
center for the right eye. On the right the joint results are presented, where the gray level of the
backgrownd codes ocular preference, the orientation of the bar codes orientation preference, and
it’s length the degree of selectivity.




